Create an array of ROC plots with confidence interval bands to compare signatures.
Source:R/bootstrap.R
signatureROCplot_CI.Rd
Create an array of ROC plots with confidence interval bands to compare signatures.
Usage
signatureROCplot_CI(
inputData,
annotationData,
signatureColNames,
annotationColName,
scale = FALSE,
choose_colors = c("cornflowerblue", "gray50", "gray79"),
name = NULL,
nrow = NULL,
ncol = NULL,
ci.lev = 0.95,
pb.show = TRUE
)
Arguments
- inputData
an input data object. It should either be of the class
SummarizedExperiment
and contain the profiled signature data and annotation data as columns in thecolData
, or alternatively be of the classesdata.frame
ormatrix
and contain only the gene expression data. Required.- annotationData
a
data.frame
ormatrix
of annotation data, with one column. Only required ifinputData
is adata.frame
ormatrix
of signature data.- signatureColNames
a
vector
of the column names ofinputData
that contain the signature data. IfinputData
is aSummarizedExperiment
object, these are the column names of the objectcolData
.- annotationColName
a character string naming the column name in the
colData
that contains the annotation data to be used in making the boxplot. Only required if inputData is aSummarizedExperiment
object.- scale
logical. Setting
scale = TRUE
scales the signature data. The default isFALSE
.- choose_colors
a vector of length 3 defining the colors to be used in the ROC plots. The default is
c("cornflowerblue", "gray50", "gray79")
.- name
a character string giving the title of the ROC plot. If
NULL
, the plot title will be"ROC Plots for Gene Signatures, <ci.lev>% Confidence"
. The default isNULL
.- nrow
integer giving the number of rows in the resulting array.
- ncol
integer giving the number of columns in the resulting array.
- ci.lev
a number between 0 and 1 giving the desired level of confidence for computing ROC curve estimations.
- pb.show
logical for whether to show a progress bar while running code. The default is
TRUE
.
Examples
# Run signature profiling
choose_sigs <- TBsignatures[c(1, 2)]
prof_indian <- runTBsigProfiler(TB_indian, useAssay = "logcounts",
algorithm = "Zscore",
signatures = choose_sigs,
parallel.sz = 1)
#> Parameter update_genes is TRUE. Gene names will be updated.
#> Running Zscore
#> Warning: 1 genes with constant values throughout the samples.
#> Warning: Genes with constant values are discarded.
# Create ROC plots with confidence intervals
signatureROCplot_CI(prof_indian, signatureColNames = names(choose_sigs),
annotationColName = "label")
#>
|
| | 0%
|
|=================================== | 50%
|
|======================================================================| 100%